编辑整理:整理来源:悟空问答,浏览量:116,时间:2022-08-16 16:21:01
大数据采集和分析项目方案,大数据采集和分析项目方案的区别,大数据采集设计
统计过程控制(SPC,Statistical Process Control)。
2.测量系统分析(MSA,Measurement System Analyse)。
3.失效模式和效果分析(FMEA,Failure Mode & Effect Analyse)。
4.产品质量先期策划(APQP,Advanced Product Quality Planning)。
5.生产件批准程序(PPAP,Production Part Approval Process)。
1、SPC一是一种制造控制方法,是将制造中的控制项目,依其特性所收集的数据,通过过程能力的分析与过程标准化,发掘过程中的异常,并立即采取改善措施,使过程恢复正常的方法。
利用统计的方法来监控制程的状态,确定生产过程在管制的状态下,以降低产品品质的变异 SPC能解决的问题 有:
1.经济性:有效的抽样管制,不用全数检验,不良率,得以控制成本。使制程稳定,能掌握品质、成本与交期。
2.预警性:制程的异常趋势可即时对策,预防整批不良,以减少浪费。
3.分辨特殊原因:作为局部问题对策或管理阶层系统改进之参考。
4.善用机器设备:估计机器能力,可妥善安排适当机器生产适当零件。
5.改善的评估:制程能力可作为改善前後比较之指标。
2、MSA一是确保测量数据的准确性/质量,使用测量系统分析(MSA)方法对获得测量数据的测量系统进行评估;二是确保使用了合适的数据分析方法,如使用SPC工具、试验设计、方差分析、回归分析等。MSA(MeasurementSystemAnalysis)使用数理统计和图表的方法对测量系统的分辨率和误差进行分析。
测量系统分析(MSA)是对每个零件能够重复读数的测量系统进行分析,评定测量系统的质量,判断测量系统产生的数据可接受性。
3、FMEA一在设计和制造产品时,通常有三道控制缺陷的防线:避免或消除故障起因、预先确定或检测故障、减少故障的影响和后果。FMEA正是帮助我们从第一道防线就将缺陷消灭在摇篮之中的有效工具。 FMEA是一种可靠性设计的重要方法。它实际上是FMA(故障模式分析)和FEA(故障影响分析)的组合。它对各种可能的风险进行评价、分析,以便在现有技术的基础上消除这些风险或将这些风险减小到可接受的水平。及时性是成功实施FMEA的最重要因素之一,它是一个“事前的行为”,而不是“事后的行为”。为达到最佳效益,FMEA必须在故障模式被纳入产品之前进行。
4、APQP一产品质量先期策划(或者产品质量先期策划和控制计划)是QS9000/TS16949质量管理体系的一部分。 定义及其他知识点: 产品质量策划是一种结构化的方法,用来确定和制定确保某产品使顾客满意所需的步骤。 产品质量策划的目标是促进与所涉及每一个人的联系,以确保所要求的步骤按时完成。 有效的产品质量策划依赖于高层管理者对努力达到使顾客满意这一宗旨的承诺。
5、PPAP一生产件批准程序(Production part approval process) PPAP生产件提交保证书:主要有生产件尺寸检验报告,外观检验报告,功能检验报告,材料检验报告; 外加一些零件控制方法和供应商控制方法;主要是制造型企业要求供应商在提交产品时做ppap文件及 首件,只有当ppap文件全部合格后才能提交;当工程变更后还须提交报告。 PPAP是对生产件的控制程序,也是对质量的一种管理方法。
因转载众多,无法找到真正来源,如标错来源,或对于文中所使用的图片、文字、链接中所包含的软件/资料等,如有侵权,请跟我们联系删除,谢谢。将在收到信息后第一时间进行删除。参考资料来源网络,仅用于行业知识分享,供个人学习参考,不得作商业用途。
方案获取方式在文末
智慧工业大数据
随着工业4.0概念的引入,工业产业进入了新一轮的全球性革命,新型工业体系最核心的特征就是互联网、大数据与工业的融合应用。工业大数据是工业4.0的核心支撑之一,将带来工业生产与管理环节的极大的升级和优化,其价值已经得到了全球的认可,但是反观我国的工业发展现状,工业数据的价值利用极其有限,如何采集、应用、管理工业大数据,快速跟进工业4.0的步伐,是传统的工业企业转型升级中必须要解决的问题。
基于大数据、物联网、云计算等核心技术能力,为全球工业及商业企业提供工业大数据咨询与实施服务,涵盖能效管理、环保监测、资产管理、安全生产、设备生命周期管理、经营管理分析等领域,充分发挥大数据能力,强化工业与大数据的深度紧密融合,为工业升级转型注入新的活力。
工业大数据解决方案是“云、移、物、大、智”深度融合的体现,使得产品与生产设备之间、不同的生产设备之间以及数字世界和物理世界之间能够互联,可以打破传统工业生产中企业、地域、操作习惯、生产经验等多重限制,在此平台上快速高效地完成工业操作制度的决策、工业大数据的云端数学建模计算、工业信息和标准的快速获取、工业问题的互动咨询。
智慧工业解决方案
智慧工业方案提供数据采集、数据传输、大数据分析、智能化控制等功能,可帮助企业提高生产环境安全,加强人员管理,优化系统功能和资源配置,降低系统运营成本等。
智慧工业解决方案
大数据智能工厂规划
大数据智能工厂规划
工业大数据架构
工业大数据架构
智能制造大数据蓝图
智能制造大数据蓝图
工业大数据特点
工业大数据特点
工业数据湖
工业数据湖
数据湖与价值发现
数据湖与价值发现
工业大数据建模目标
工业大数据建模目标
产线数据建模
如图显示的机器学习算法,多级算法分析引擎可以根据对工厂已安装设备的数据采集和工艺流程,自动绘制内在的逻辑关系,并显示哪个工艺流程和数据流之间直接或间接的相互关系,以及这种关系存在的原因。这种深层和独特的分析提供了一个高等级的平台来侦测异常,通过行为和运营表现来标记质量与效率,并进行微观辩证性的根源问题分析。
产线数据建模
模型算法-DNN
神经网络是一组模拟人脑进行模式识别的算法组合,通过聚类或者标记原始数据进行数据感知,它可以识别真实世界包含在向量中的数据,如图片、声音、文本等。
深度神经网络与单层神经网络的区别是数据通过了多步模式识别的隐藏层处理,传统的神经网络机器学习算法依赖于一个输入一个输出一个隐藏的浅层神经网络学习,而深度神经网络是在一个以上的隐藏层学习。
DNN
模型与数据
模型与数据
设备预测性维修
设备预测性维修
异常检测
异常检测
生产过程优化
生产过程优化
人机协同优化
人机协同优化
智慧工业解决方案平台架构
平台架构
智慧工业解决方案平台架构
共分为三层:数据采集层(适配器)、数据支持层(Gards云平台)、应用层(FIDIS应用系统)。
数据层:
提供BIOP-EG智能网关接入设备和BIOP的接入接口软件,支持各类工业系统(DCS、PLC、SCADA等)、业务系统(ERP、MES、EAM、MRO等)、工业设备和工业产品的接入。全结构化工业数据的智能感知采集技术,实现系统、设备、产品级等多种数据源接入,多种协议的智能解析(OPC、TCP/IP、Modbus、Profibus、CAN等),提供GB、TB、到PB级的智能数据采集。实现数据加密传输和加密存储功能,满足企业对数据安全的需求。
工业平台层:
BIOP平台提供可扩展的工业云操作系统,能够实现对软硬件资源和开发工具的接入、控制和管理,为应用开发提供必要的存储、计算、分析、挖掘、工具资源等支持。包括:分布式存储、分布式计算、数值质量及安全、数据分析、数据挖掘、数据可视化等功能模块。
工业应用层:
通过云化软件和专用APP平台(支持第三方开发)应用构架,面向企业客户提供各类软件和应用服务。对第三方开发者提供开发环境与开发工具,且封装了大量的工业技术原理、行业知识、基础模型,以微服务组件方式为开发者提供调用,来开发更多面向用户的创造性应用。BIOP平台提供经营管理、能源管理、安全管理、环保管理、资金流管理及物资流管理、资产全生命周期管理及预测性维护(PHM)等应用服务,帮助客户实现优化企业资源配置,提高企业资源利用率,提升企业的管理能力、营销能力和资源整合能力,推动企业向智能制造迈进。
智慧工业解决方案:智能工业APP
“智能工业”云平台标志着 “工业4.0”时代的到来!物联化、智能化和互联化是“智能工业”云平台的基础,它将物联网、云计算、大数据、移动互联等技术与传统工业深度融合,让工业设备变得更节能、更环保、更安全。
智能工业APP
下载方式高质量PPT方案报告及WORD方案已上传至知识星球(目前已经积累2W+方案报告待上传星球)。
加入方式:
1)、关注公众号:优享智库
2)发信息
3)点击知识星球,获取加入方式。会员不限量下载。
最近写了好多大数据分析的文章,《大数据分析十八般工具》、《剖析大数据分析就业前景》、《大数据分析是什么》、《大数据分析12大就业方向》等,好多同学问我大数据分析流程是什么,要小编姐姐整理一下,分享出来,今天我们就说说大数据分析流程是什么?
一、大数据分析流程图
1.1 数据处理流程
该项目是一个纯粹的大数据分析项目,其整体流程基本上就是依据数据的处理流程进行,依此有以下几个大的步骤:
1) 数据采集
首先,通过页面嵌入JS代码的方式获取用户访问行为,并发送到web服务的后台记录日志;然后,将各服务器上生成的点击流日志通过实时或批量的方式汇聚到HDFS文件系统中;一个综合分析系统,数据源可能不仅包含点击流数据,还有数据库中的业务数据(如用户信息、商品信息、订单信息等)及对分析有益的外部数据。
2) 数据预处理
通过mapreduce程序对采集到的点击流数据进行预处理,比如清洗,格式整理,滤除脏数据等
3) 数据入库
将预处理之后的数据导入到HIVE仓库中相应的库和表中
4) 数据分析
项目的核心内容,即根据需求开发ETL分析语句,得出各种统计结果
5) 数据展现
将分析所得数据进行可视化
1.2 项目结构
由于本项目是一个纯粹大数据分析项目,其整体结构亦跟分析流程匹配,并没有特别复杂的结构,如下图:
其中,需要强调的是:系统的大数据分析不是一次性的,而是按照一定的时间频率反复计算,因而整个处理链条中的各个环节需要按照一定的先后依赖关系紧密衔接,即涉及到大量任务单元的管理调度,所以,项目中需要添加一个任务调度模块
1.3 数据展现
数据展现的目的是将分析所得的数据进行可视化,以便运营决策人员能更方便地获取数据,更快更简单地理解数据,下面是对独立访客的数据分析展现示例:
二、大数据分析的5个方面
1.、Analytic Visualizations(可视化分析)
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。零基础学大数据分析现实吗
2.、Data Mining Algorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
3.、Predictive Analytic Capabilities(预测性分析能力)
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
4.、Semantic Engines(语义引擎)
我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
5.、Data Quality and Master Data Management(数据质量和数据管理)
数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。
假如大数据真的是下一个重要的技术革新的话,我们最好把精力关注在大数据分析能给我们带来的好处,而不仅仅是挑战。
6、数据存储,数据仓库
数据仓库是为了便于多维分析和多角度展示数据按特定模式进行存储所建立起来的关系型数据库。在商业智能系统的设计中,数据仓库的构建是关键,是商业智能系统的基础,承担对业务系统数据整合的任务,为商业智能系统提供数据抽取、转换和加载(ETL),并按主题对数据进行查询和访问,为联机数据分析和数据挖掘提供数据平台。
三、大数据项目开发步骤:
第一步:需求:数据的输入和数据的产出;
第二步:数据量、处理效率、可靠性、可维护性、简洁性;
第三步:数据建模;
第四步:架构设计:数据怎么进来,输出怎么展示,最最重要的是处理流出数据的架构;
第五步:再次思考大数据系统和企业IT系统的交互;
第六步:最终确定选择、规范等;
第七步:基于数据建模写基础服务代码;
第八步:正式编写第一个模块;
第九步:实现其它的模块,并完成测试和调试等;
第十步:测试和验收;
四、大数据分析流程
从流程角度上看,整个大数据分析处理可分成4个主要步骤。
第一步是数据的搜集与存储;
第二步是通过数据分析技术对数据进行探索性研究,包括无关数据的剔除,即数据清洗,与寻找数据的模式探索数据的价值所在;
第三步为在基本数据分析的基础上,选择和开发数据分析算法,对数据进行建模。从数据中提取有价值的信息,这其实是真正的阿里云大数据的学习过程。这当中会涉及很多算法和技术,比如机器学习算法等;
最后一步是对模型的部署和应用,即把研究出来的模型应用到生产环境之中。
1) 数据采集:定制开发采集程序,或使用开源框架flume
2) 数据预处理:定制开发mapreduce程序运行于hadoop集群
3) 数据仓库技术:基于hadoop之上的Hive
4) 数据导出:基于hadoop的sqoop数据导入导出工具
5) 数据可视化:定制开发web程序或使用kettle等产品
五、案例分享
1、提出需求-需要和多个部门负责人进行协商:关于项目的可行性分析
2、需求分析-进行需求调研(研究竞品)、市场调研,如果是给甲方做产品,需要和甲方协商需求细则
3、技术选型-需要多个开发部门的人员参与协商:考虑的角度:数据的生成、数据采集、源数据的存储、数据清洗、消息中间件、数据分析引擎、结果数据的存储、数据的展示
4、可行性分析-预研工作:搭建技术平台,测试可行性
5、指标分析-需求和指标之间的转换,需求的细化
6、数据对接-数据采集、清洗、源数据存储、中间件(项目前期是一个非常重要而且有难度的工作)
7、数据分析-把指标转换为代码的过程
8、结果的存储
9、数据展示-运营部门
大数据采集和分析项目方案,大数据采集和分析项目方案的区别,大数据采集设计
作者:整理来源:悟空问答,时间:2022-08-16 16:21,浏览:117