大数据日志采集分析栈-大数据日志采集工具

编辑整理:整理来源:优酷,浏览量:66,时间:2022-12-11 01:07:02

大数据日志采集分析栈,大数据的采集与分析,大数据的采集与分析

前沿:大数据日志采集分析栈

 下面就来看看如何查看Windows日志吧。
  1、 绿右键单击桌面的或开始菜单的“计算机”,选择"管理";
  2、 接着弹出的来自就是“计算机管理”窗球乡热待采口,依次展开“事件查看器”-“Windows日志”,下拉目录中即是前面说到的五类Windows日志。
  3、 在“windows日志”目录下,点击任一种,便可以查看相关日志了。
  4、另外,还可影印果介守走征司指错针以通过控制面板来实现,大致为控制面板-系统和安全-管理工具—查看事件日志。
  Wi出切则功五言成色ndows日志主要提供给专业人员分析系统存在的受北革计价阳景依第问题和产生问题的原因,对于普通用户,Windo这处下社写话零旧药岁ws日志有时可能毫无价值,而且占用C盘空间。如果系统正常平稳运行,线卫尔可一段时间清理一次,大部分安汉里聚云短消罪门革投留全软件和系统优化软件都提供Windows日志清理功能。
大数据日志采集分析栈


大数据日志采集工具

在云原生时代和容器化浪潮中,容器的日志采集是一个看起来不起眼却又无法忽视的重要议题。对于容器日志采集我们常用的工具有filebeat和fluentd,两者对比各有优劣,相比基于ruby的fluentd,考虑到可定制性,我们一般默认选择golang技术栈的filbeat作为主力的日志采集agent。 相比较传统的日志采集方式,容器化下单节点会运行更多的服务,负载也会有更短的生命周期,而这些更容易对日志采集agent造成压力,虽然filebeat足够轻量级和高性能,但如果不了解filebeat的机制,不合理的配置filebeat,实际的生产环境使用中可能也会给我们带来意想不到的麻烦和难题。

整体架构

日志采集的功能看起来不复杂,主要功能无非就是找到配置的日志文件,然后读取并处理,发送至相应的后端如elasticsearch,kafka等。 filebeat官网有张示意图,如下所示:

大数据日志处理

针对每个日志文件,filebeat都会启动一个harvester协程,即一个goroutine,在该goroutine中不停的读取日志文件,直到文件的EOF末尾。一个最简单的表示采集目录的input配置大概如下所示:

filebeat.inputs: - type: log # Paths tt should be crawled and fetched. Glob based paths. paths: - /var/log/*.log 复制代码

不同的harvester goroutine采集到的日志数据都会发送至一个全局的队列queue中,queue的实现有两种:基于内存和基于磁盘的队列,目前基于磁盘的队列还是处于alpha阶段,filebeat默认启用的是基于内存的缓存队列。 每当队列中的数据缓存到一定的大小或者超过了定时的时间(默认1s),会被注册的client从队列中消费,发送至配置的后端。目前可以设置的client有kafka、elasticsearch、redis等。

虽然这一切看着挺简单,但在实际使用中,我们还是需要考虑更多的问题,例如:

日志文件是如何被filbebeat发现又是如何被采集的?filebeat是如何确保日志采集发送到远程的存储中,不丢失一条数据的?如果filebeat挂掉,下次采集如何确保从上次的状态开始而不会重新采集所有日志?filebeat的内存或者cpu占用过多,该如何分析解决?filebeat如何支持docker和kubernetes,如何配置容器化下的日志采集?想让filebeat采集的日志发送至的后端存储,如果原生不支持,怎样定制化开发?

这些均需要对filebeat有更深入的理解,下面让我们跟随filebeat的源码一起探究其中的实现机制。

一条日志是如何被采集的

filebeat源码归属于beats项目,而beats项目的设计初衷是为了采集各类的数据,所以beats抽象出了一个libbeat库,基于libbeat我们可以快速的开发实现一个采集的工具,除了filebeat,还有像metricbeat、packetbeat等官方的项目也是在beats工程中。 如果我们大致看一下代码就会发现,libbeat已经实现了内存缓存队列memqueue、几种output日志发送客户端,数据的过滤处理processor等通用功能,而filebeat只需要实现日志文件的读取等和日志相关的逻辑即可。

从代码的实现角度来看,filebeat大概可以分以下几个模块:

input: 找到配置的日志文件,启动harvesterharvester: 读取文件,发送至spoolerspooler: 缓存日志数据,直到可以发送至publisherpublisher: 发送日志至后端,同时通知registrarregistrar: 记录日志文件被采集的状态1. 找到日志文件

对于日志文件的采集和生命周期管理,filebeat抽象出一个Crawler的结构体, 在filebeat启动后,crawler会根据配置创建,然后遍历并运行每个input:

for _, inputConfig := range c.inputConfigs { err := c.startInput(pipeline, inputConfig, r.GetStates()) } 复制代码

在每个input运行的逻辑里,首先会根据配置获取匹配的日志文件,需要注意的是,这里的匹配方式并非正则,而是采用linux glob的规则,和正则还是有一些区别。

matches, err := filepath.Glob(path) 复制代码

获取到了所有匹配的日志文件之后,会经过一些复杂的过滤,例如如果配置了exclude_files则会忽略这类文件,同时还会查询文件的状态,如果文件的最近一次修改时间大于ignore_older的配置,也会不去采集该文件。

2. 读取日志文件

匹配到最终需要采集的日志文件之后,filebeat会对每个文件启动harvester goroutine,在该goroutine中不停的读取日志,并发送给内存缓存队列memqueue。 在(h *Harvester) Run()方法中,我们可以看到这么一个无限循环,省略了一些逻辑的代码如下所示:

for { message, err := h.reader.Next() if err != nil { switch err { case ErrFileTruncate: logp.Info("File was truncated. Begin reading file from offset 0: %s", h.state.Source) h.state.Offset = 0 filesTruncated.Add(1) case ErrRemoved: logp.Info("File was removed: %s. Closing because close_removed is enabled.", h.state.Source) case ErrRenamed: logp.Info("File was renamed: %s. Closing because close_renamed is enabled.", h.state.Source) case ErrClosed: logp.Info("Reader was closed: %s. Closing.", h.state.Source) case io.EOF: logp.Info("End of file reached: %s. Closing because close_eof is enabled.", h.state.Source) case ErrInactive: logp.Info("File is inactive: %s. Closing because close_inactive of %v reached.", h.state.Source, h.config.CloseInactive) default: logp.Err("Read line error: %v; File: %v", err, h.state.Source) } return nil } ... if !h.sendEvent(data, forwarder) { return nil } } 复制代码

可以看到,reader.Next()方法会不停的读取日志,如果没有返回异常,则发送日志数据到缓存队列中。 返回的异常有几种类型,除了读取到EOF外,还会有例如文件一段时间不活跃等情况发生会使harvester goroutine退出,不再采集该文件,并关闭文件句柄。 filebeat为了防止占据过多的采集日志文件的文件句柄,默认的close_inactive参数为5min,如果日志文件5min内没有被修改,上面代码会进入ErrInactive的case,之后该harvester goroutine会被关闭。 这种场景下还需要注意的是,如果某个文件日志采集中被移除了,但是由于此时被filebeat保持着文件句柄,文件占据的磁盘空间会被保留直到harvester goroutine结束。

3. 缓存队列

在memqueue被初始化时,filebeat会根据配置min_event是否大于1创建BufferingEventLoop或者DirectEventLoop,一般默认都是BufferingEventLoop,即带缓冲的队列。

type bufferingEventLoop struct { broker *Broker buf *batchBuffer flushList flushList eventCount int minEvents int maxEvents int flushTimeout time.Duration // active broker API channels events chan pushRequest get chan getRequest pubCancel chan producerCancelRequest // ack handling acks chan int // ackloop -> eventloop : total number of events ACKed by outputs schedACKS chan chanList // eventloop -> ackloop : active list of batches to be acked pdingACKs chanList // ordered list of active batches to be send to the ackloop ackSeq uint // ack batch sequence number to validate ordering // buffer flush timer state timer *time.Timer idleC <-chan time.Time } 复制代码

BufferingEventLoop是一个实现了Broker、带有各种channel的结构,主要用于将日志发送至consumer消费。 BufferingEventLoop的run方法中,同样是一个无限循环,这里可以认为是一个日志事件的调度中心。

for { select { case <-broker.done: return case req := <-l.events: // producer pushing new event l.handleInsert(&req) case req := <-l.get: // consumer asking for next batch l.handleConsumer(&req) case count := <-l.acks: l.handleACK(count) case <-l.idleC: l.idleC = nil l.timer.Stop() if l.buf.length() > 0 { l.flushBuffer() } } } 复制代码

上文中harvester goroutine每次读取到日志数据之后,最终会被发送至bufferingEventLoop中的events chan pushRequest channel,然后触发上面req := <-l.events的case,handleInsert方法会把数据添加至bufferingEventLoop的buf中,buf即memqueue实际缓存日志数据的队列,如果buf长度超过配置的最大值或者bufferingEventLoop中的timer定时器触发了case <-l.idleC,均会调用flushBuffer()方法。 flushBuffer()又会触发req := <-l.get的case,然后运行handleConsumer方法,该方法中最重要的是这一句代码:

req.resp <- getResponse{ackChan, events} 复制代码

这里获取到了consumer消费者的response channel,然后发送数据给这个channel。真正到这,才会触发consumer对memqueue的消费。所以,其实memqueue并非一直不停的在被consumer消费,而是在memqueue通知consumer的时候才被消费,我们可以理解为一种脉冲式的发送。

4. 消费队列

实际上,早在filebeat初始化的时候,就已经创建了一个eventConsumer并在loop无限循环方法里试图从Broker中获取日志数据。

for { if !paused && c.out != nil && consumer != nil && batch == nil { out = c.out.workQueue queueBatch, err := consumer.Get(c.out.batchSize) ... batch = newBatch(c.ctx, queueBatch, c.out.timeToLive) } ... select { case <-c.done: return case sig := <-c.sig: handleSignal(sig) case out <- batch: batch = nil } } 复制代码

上面consumer.Get就是消费者consumer从Broker中获取日志数据,然后发送至out的channel中被output client发送,我们看一下Get方法里的核心代码:

select { case c.broker.requests <- getRequest{sz: sz, resp: c.resp}: case <-c.done: return nil, io.EOF } // if request has been send, we do have to wait for a response resp := <-c.resp return &batch{ consumer: c, events: resp.buf, ack: resp.ack, state: batchActive, }, nil 复制代码

getRequest的结构如下:

type getRequest struct { sz int // request sz events from the broker resp chan getResponse // channel to send response to } 复制代码

getResponse的结构:

type getResponse struct { ack *ackChan buf []publisher.Event } 复制代码

getResponse里包含了日志的数据,而getRequest包含了一个发送至消费者的channel。 在上文bufferingEventLoop缓冲队列的handleConsumer方法里接收到的参数为getRequest,里面包含了consumer请求的getResponse channel。 如果handleConsumer不发送数据,consumer.Get方法会一直阻塞在select中,直到flushBuffer,consumer的getResponse channel才会接收到日志数据。

5. 发送日志

在创建beats时,会创建一个clientWorker,clientWorker的run方法中,会不停的从consumer发送的channel里读取日志数据,然后调用client.Publish批量发送日志。

func (w *clientWorker) run() { for !w.closed.Load() { for batch := range w.qu { if err := w.client.Publish(batch); err != nil { return } } } } 复制代码

libbeats库中包含了kafka、elasticsearch、logstash等几种client,它们均实现了client接口:

type Client interface { Close() error Publish(publisher.Batch) error String() string } 复制代码

当然最重要的是实现Publish接口,然后将日志发送出去。

实际上,filebeat中日志数据在各种channel里流转的设计还是比较复杂和繁琐的,笔者也是研究了好久、画了很长的架构图才理清楚其中的逻辑。 这里抽出了一个简化后的图以供参考:

大数据采集和分析

如何保证at least once

filebeat维护了一个registry文件在本地的磁盘,该registry文件维护了所有已经采集的日志文件的状态。 实际上,每当日志数据发送至后端成功后,会返回ack事件。filebeat启动了一个独立的registry协程负责监听该事件,接收到ack事件后会将日志文件的State状态更新至registry文件中,State中的Offset表示读取到的文件偏移量,所以filebeat会保证Offset记录之前的日志数据肯定被后端的日志存储接收到。 State结构如下所示:

type State struct { Id string `json:"-"` // local unique id to make comparison more efficient Finished bool `json:"-"` // harvester state Fileinfo os.FileInfo `json:"-"` // the file info Source string `json:"source"` Offset int64 `json:"offset"` Timestamp time.Time `json:"timestamp"` TTL time.Duration `json:"ttl"` Type string `json:"type"` Meta map[string]string `json:"meta"` FileStateOS file.StateOS } 复制代码

记录在registry文件中的数据大致如下所示:

[{"source":"/tmp/aa.log","offset":48,"timestamp":"2019-07-03T13:54:01.298995+08:00","ttl":-1,"type":"log","meta":null,"FileStateOS":{"inode":7048952,"device":16777220}}] 复制代码

由于文件可能会被改名或移动,filebeat会根据inode和设备号来标志每个日志文件。 如果filebeat异常重启,每次采集harvester启动的时候都会读取registry文件,从上次记录的状态继续采集,确保不会从头开始重复发送所有的日志文件。 当然,如果日志发送过程中,还没来得及返回ack,filebeat就挂掉,registry文件肯定不会更新至最新的状态,那么下次采集的时候,这部分的日志就会重复发送,所以这意味着filebeat只能保证at least once,无法保证不重复发送。 还有一个比较异常的情况是,linux下如果老文件被移除,新文件马上创建,很有可能它们有相同的inode,而由于filebeat根据inode来标志文件记录采集的偏移,会导致registry里记录的其实是被移除的文件State状态,这样新的文件采集却从老的文件Offset开始,从而会遗漏日志数据。 为了尽量避免inode被复用的情况,同时防止registry文件随着时间增长越来越大,建议使用clean_inactive和clean_remove配置将长时间未更新或者被删除的文件State从registry中移除。

同时我们可以发现在harvester读取日志中,会更新registry的状态处理一些异常场景。例如,如果一个日志文件被清空,filebeat会在下一次Reader.Next方法中返回ErrFileTruncate异常,将inode标志文件的Offset置为0,结束这次harvester,重新启动新的harvester,虽然文件不变,但是registry中的Offset为0,采集会从头开始。

特别注意的是,如果使用容器部署filebeat,需要将registry文件挂载到宿主机上,否则容器重启后registry文件丢失,会使filebeat从头开始重复采集日志文件。

filebeat自动reload更新

目前filebeat支持reload input配置,module配置,但reload的机制只有定时更新。 在配置中打开reload.enable之后,还可以配置reload.period表示自动reload配置的时间间隔。 filebeat在启动时,会创建一个专门用于reload的协程。对于每个正在运行的harvester,filebeat会将其加入一个全局的Runner列表,每次到了定时的间隔后,会触发一次配置文件的diff判断,如果是需要停止的加入stopRunner列表,然后逐个关闭,新的则加入startRunner列表,启动新的Runner。

filebeat对kubernetes的支持

filebeat官方文档提供了在kubernetes下基于daemonset的部署方式,最主要的一个配置如下所示:

- type: docker containers.ids: - "*" processors: - add_kubernetes_metadata: in_cluster: true 复制代码

即设置输入input为docker类型。由于所有的容器的标准输出日志默认都在节点的/var/lib/docker/containers/<containerId>/*-json.log路径,所以本质上采集的是这类日志文件。 和传统的部署方式有所区别的是,如果服务部署在kubernetes上,我们查看和检索日志的维度不能仅仅局限于节点和服务,还需要有podName,containerName等,所以每条日志我们都需要打标增加kubernetes的元信息才发送至后端。 filebeat会在配置中增加了add_kubernetes_metadata的processor的情况下,启动监听kubernetes的watch服务,监听所有kubernetes pod的变更,然后将归属本节点的pod最新的事件同步至本地的缓存中。 节点上一旦发生容器的销毁创建,/var/lib/docker/containers/下会有目录的变动,filebeat根据路径提取出containerId,再根据containerId从本地的缓存中找到pod信息,从而可以获取到podName、label等数据,并加到日志的元信息fields中。 filebeat还有一个beta版的功能autodiscover,autodiscover的目的是把分散到不同节点上的filebeat配置文件集中管理。目前也支持kubernetes作为provider,本质上还是监听kubernetes事件然后采集docker的标准输出文件。 大致架构如下所示:

大数据的采集与分析

但是在实际生产环境使用中,仅采集容器的标准输出日志还是远远不够,我们往往还需要采集容器挂载出来的自定义日志目录,还需要控制每个服务的日志采集方式以及更多的定制化功能。

在轻舟容器云上,我们自研了一个监听kubernetes事件自动生成filebeat配置的agent,通过CRD的方式,支持自定义容器内部日志目录、支持自定义fields、支持多行读取等功能。同时可在kubernetes上统一管理各种日志配置,而且无需用户感知pod的创建销毁和迁移,自动完成各种场景下的日志配置生成和更新。

性能分析与调优

虽然beats系列主打轻量级,虽然用golang写的filebeat的内存占用确实比较基于jvm的logstash等好太多,但是事实告诉我们其实没那么简单。 正常启动filebeat,一般确实只会占用3、40MB内存,但是在轻舟容器云上偶发性的我们也会发现某些节点上的filebeat容器内存占用超过配置的pod limit限制(一般设置为200MB),并且不停的触发的OOM。 究其原因,一般容器化环境中,特别是裸机上运行的容器个数可能会比较多,导致创建大量的harvester去采集日志。如果没有很好的配置filebeat,会有较大概率导致内存急剧上升。 当然,filebeat内存占据较大的部分还是memqueue,所有采集到的日志都会先发送至memqueue聚集,再通过output发送出去。每条日志的数据在filebeat中都被组装为event结构,filebeat默认配置的memqueue缓存的event个数为4096,可通过queue.mem.events设置。默认最大的一条日志的event大小限制为10MB,可通过max_bytes设置。4096 * 10MB = 40GB,可以想象,极端场景下,filebeat至少占据40GB的内存。特别是配置了multiline多行模式的情况下,如果multiline配置有误,单个event误采集为上千条日志的数据,很可能导致memqueue占据了大量内存,致使内存爆炸。 所以,合理的配置日志文件的匹配规则,限制单行日志大小,根据实际情况配置memqueue缓存的个数,才能在实际使用中规避filebeat的内存占用过大的问题。

如何对filebeat进行扩展开发

一般情况下filebeat可满足大部分的日志采集需求,但是仍然避免不了一些特殊的场景需要我们对filebeat进行定制化开发,当然filebeat本身的设计也提供了良好的扩展性。 beats目前只提供了像elasticsearch、kafka、logstash等几类output客户端,如果我们想要filebeat直接发送至其他后端,需要定制化开发自己的output。同样,如果需要对日志做过滤处理或者增加元信息,也可以自制processor插件。 无论是增加output还是写个processor,filebeat提供的大体思路基本相同。一般来讲有3种方式:

直接fork filebeat,在现有的源码上开发。output或者processor都提供了类似Run、Stop等的接口,只需要实现该类接口,然后在init方法中注册相应的插件初始化方法即可。当然,由于golang中init方法是在import包时才被调用,所以需要在初始化filebeat的代码中手动import。复制一份filebeat的main.go,import我们自研的插件库,然后重新编译。本质上和方式1区别不大。filebeat还提供了基于golang plugin的插件机制,需要把自研的插件编译成.so共享链接库,然后在filebeat启动参数中通过-plugin指定库所在路径。不过实际上一方面golang plugin还不够成熟稳定,一方面自研的插件依然需要依赖相同版本的libbeat库,而且还需要相同的golang版本编译,坑可能更多,不太推荐。

补充拓展:大数据日志采集分析栈

大数据的采集方法
1)数据库采集
Redis、MongoDB和HBase等NoSQL数据库常用于数据的采集。企业通过在采集端部署大量数据库,并在这些数据库之间进行负载均衡和分片,来完成大数据采集工作。
2)系统日志采集
系统日志采集主要是手机公司业务平台日常产生的大量日志数据,供离线和在线的大数据分析系统使用。高可用性、高可靠性、可扩展性是日志收集系统所具有的基本特征。系统日志采集工具均采用分布式架构,能够满足每秒数百MB的日志数据采集和传输需求。
3)网络数据采集
网络数据采集是指通过网络爬虫或网站公开API等方式从网站上获取数据信息的过程。
4)感知设备数据采集
感知设备数据采集是指通过传感器、摄像头和其他智能终端自动采集信号、图片或录像来获取数据。
大数据日志采集分析栈

行业热门话题:

【大数据日志采集工具】【大数据日志处理】【大数据采集和分析】【大数据的采集与分析】【系统日志数据采集】【数据库日志采集】【大数据中日志采集工具】【大数据 日志】【大数据日志采集工具有哪些】【大数据中日志采集工具有哪些】
大数据日志采集分析栈-大数据日志采集工具完!

相关推荐:


关键词文章生成器,点击查看演示目录:http://www.wskqs.cn/shisange/


睢宁岚山镇教育培训软文推广如何借势营销| 吴川樟铺镇餐饮点菜师证书-餐饮方面的资格证书有哪些| 潜山余井镇精品软文营销| ai批量创作原创文章 西城区ai批量创作原创文章怎么做| 汉语词典在线查询| 义亭镇电子商务解决方案| 项目经理证书 项目经理证书有效期是多少年| 短视频大v广告转发合作全国接单| 如东城中街道微信获客-微信获客方式| 软文营销的两大部分 软文营销包括的两大部分|
投稿| 1024(定向养站+文章采集+ai聚合)目录程序| 1888(定向养站+文章采集+ai聚合)泛目录版| 双标题| 挖关键词| 违禁词删除| 伪原创| 免费配图| 自助解答| 站长变现| 今日头条| 问答聚合| 818(今日头条资讯聚合演示)| 1024(采集聚合+ai聚合)| 1024 (AI定向养站目录程序)| 淘客文章带货| 定向养站目录程序| ai写作目录程序

苏ICP备2021004623号 (免责声明:本网站部分内容由用户自行上传,如权利人发现存在侵犯其权益情形,请及时与本站联系。)(版权所有:昆山市一路火信息技术服务中心) 友情导航 网络警察提醒您 中国互联网辟谣平台 中国文明网传播文明 中国互联网举报中心