数据埋点采集分析-数据埋点采集分析报告


Time:2024-10-12 01:12:18

关于数据埋点采集分析的问题,我们总结了以下几点,给你解答:

数据埋点采集分析


数据埋点采集分析

编辑导语:在数据采集过程中,埋点或无埋点都可以走向获得数据的路径,只是具体情况应具体分析。本篇文章里,作者就对埋点和无埋点的适用场景以及后续方案提出了他的思考。让我们一起来看一下吧。

数据采集是实现产品分析、用户增长等关键要素。数据采集常见问题包括业务数据缺漏、导致缺少数据支撑识别业务问题;技术人员和业务人员无法对齐埋点口径,缺少统一管理。

本文将带大家了解埋点和无埋点的适用场景、步骤和对应的解决方案,希望对大家有所帮助。

一、埋点和无埋点的优劣势和适用场景1. 埋点,即采用capture模式,通过写代码进行数据采集

其优势在于采集的数据准确性高,稳定性强,适合对数据进行监控和分析。

当然其劣势也较明显。埋点需要跨团队合作,无法回溯历史数据,当产品经理疏漏某些埋点时,也就意味着丢失了一部分用户行为数据。

基于以上对埋点的分析,埋点一般适用于对数据稳定和准确的需求较高、并且需要长期监控和需要设置数据权限的场景。

比如某电商平台需要分析注册平台的用户的职业、年龄,这些业务属性就需要通过埋点实现。

2. 无埋点采用record模式,前端自动上报所有数据

从业务角度出发,上报的数据包括谁(who)在什么时候(when)哪个位置(where)用什么方式(how)做了什么(what)。

其优势在于减少了跨团队合作,避免了人为对埋点的缺漏,但是无法采集业务数据。比如识别到用户点击了下单,但是没办法识别到用户下单的商品内容。

基于以上对无埋点的分析,无埋点一般适用于业务属性较弱、不需要长期监控、一般采集非核心数据的场景。

比如对于用户注册登录App,到进入首页的流程转化,可以通过无埋点轻松实现。

二、埋点和无埋点采集的步骤1. 埋点的步骤

由以上分析得知,埋点的一大劣势在于需要跨团队合作,其步骤如下图:

1)确定场景和目标

确定场景和目标的角色可能是业务方提出,产品经理或数据分析师确认。

比如,数据显示查看商品详情页的人非常多,但是最后下单的人却非常少,想要了解是这些下单用户的职业。

2)数据采集规划

需要数据分析师输出方案后和业务、技术同事确认。以下图为埋点方案框架示例:

3)埋点采集数据

开发基于方案采集数据。

4)数据评估和数据分析

数据分析师对收集的数据进行分析,评估数据的完整,判断是否满足目标。

5)输出优化方案

数据分析师基于一轮收集的数据所发现的问题输出优化方案。当然,技术上可能对发现的bug进行检测修复。

6)实施优化方案

若是方案问题,则数据分析师需要再次输出方案,技术进行实施。

7)持续监测评估

在往后的日子,数据分析师需要定时检测数据,技术检测技术实现问题。所有的更新均需要有更新记录存档。

2. 无埋点的步骤

对比与埋点的步骤,无埋点的步骤中需要参与的角色基本需要技术一方,较好避免了跨团队合作的成本,所有角色均可以在可视化工具中查到对应的数据,可见下图:

三、“埋点”+“无埋点”的一站式解决方案1. 为什么要“埋点”+“无埋点”?

基于以上我们对埋点和无埋点的优劣势和步骤分析,可以得出:

无埋点效率很高,避免多团队沟通,快速且可涉及范围广,不会受系统升级改版和复杂的交互影响。埋点能够收集更多深入的业务属性,对业务影响较大。

因此,采用“埋点+无埋点”的方式,一方面能提高效率,快速满足埋点的广度,另一方面能够深入采集,挖掘埋点的深度。

2. 怎么采用“埋点”+“无埋点”解决方案?

解决方案的关键在于:找到和场景相匹配的埋点方式。

以一个用户在外卖平台点奶茶到最后下单支付的流程为例:

在整个过程中,用户所触发的行为事件包括过程型事件(不具备深入的业务属性),也包括结果型数据(具备一定业务属性),采用“埋点+无埋点”的方式,能够将效率发挥到极致,并且也收集到符合广度和深度的数据。

参考文献:

1)《数据采集与指标分析》

2)《首席增长官》

本文由@DWz 原创发布于人人都是产品经理。未经许可,禁止转载。

题图来自Unsplash,基于 CC0 协议

数据埋点采集分析报告


数据埋点采集分析报告

首先,我们要明确数据分析的概念和含义,清楚地理解什么是数据分析;
什么是数据分析呢,浅层面讲就是通过数据,查找其中蕴含的能够反映现实状况的规律。
专业一点讲:数据分析就是适当的统计分析方法对收集来的大量数据进行分析,将他们加以汇总、理解和消化,以求最大化的开发数据的功能,发挥数据的作用。
那么,我们做数据 分析的目的是什么呢?
事实上,数据分析就是为了提取有用的信息和形成结论而对数据加以详细的研究和概括总结的过程。
数据分析可以分为:描述性数据分析、探索性数据分析、验证性数据分析
工作中我们运用数据分析的作用有哪些?
1、现状分析:就是企业运营状况的分析,主要是各项指标的监控以及日报、周报、月报等
2、原因分析:需求分析,多数是针对运营中出现的问题进行剖析,找出出现问题的因素以便于解决问题
3、预测分析:针对以后的运营情况做出分析报告,对公司以后的发展趋势做出有效的预测,对公司的发展目标和策略制定做出有力的支撑。
最重要的一点:
我们如何做数据分析呢,换一句话说就是如何进行数据分析,是怎样的流程?
然后,我们来看数据分析的六部曲
1、明确分析目的和思路:
这一定很重要,你想通过数据分析得到什么,你想通过数据分析告诉别人什么,这是你做数据分析的首要问题,分析不能是漫无目的的,一定要明确思路,有目的性、有计划性的去做数据分析。找好角度、指标、以及分析逻辑尤为重要。
2、数据收集,这里不做过多的说明,一般情况下,数据来源都会可靠有效。我们要做的只是把我们需求的数据get即可。
3、数据处理:
主要包括数据清洗、数据转化、数据提取、数据计算等方法,数据分析的前提是要保证数据质量,如果数据质量无法保证,分析出来的结果也没法得到有效的利用,甚至会对决策者造成误导的行为。

4、数据分析:
首先要明确数据处理和数据分析的区别:数据处理只是数据分析的基础,我们做数据处理就是为了保证数据形式合适,保证数据的一致性和有效性。
5、数据展现:
数据展现就是把数据分析的结果,用可视化的图标形式展现出来,用一种简单易懂的方式表达出你分析的观点
6、撰写报告:
数据分析报告其实就是对整个数据分析过程的一个总结与呈现,通过报告把数据分析的起因、过程、结果及建议完整的呈现出来,供决策者参考。

为什么自家公司有数据分析员,还要找外面的分析数据?

因为你家数据分析员是只听他上一级领导一个人的话,他不仅要考虑这个月的工资,还要考虑下个月的工资,怕丢工作,领导说什么就是什么;于是就有了“先有结果后有数据分析”的这种情况。这样的分析和结果肯定是不对的。也不可能是有效的。


试试用地图慧,它具备强大的数据分析能力。它能够对海量的地理信息数据进行深入挖掘,发现其中隐藏的商业机会和潜在客户。通过地图慧的数据分析,企业可以更好地了解市场需求和竞争态势,从而拓展业务渠道、提升业务效率。


付费内容限时免费查看



回答

你好,一探讨需求在开始分析数据或深入研究分析技术之前,与团队里的所有小伙伴一起坐下来,确定主要活动或战略目标是很关键的,需要从根本上了解哪些类型最有利于发展,或哪些数据对发展的前景最有帮助。



提问

有效的数据分析



回答

2确定问题一旦确定了核心目标,你应该考虑哪些问题需要被回答来帮助你完成你的目标。为了帮助提出正确的问题并确保数据有用,提出问题、寻解答案是必不可少的。3收集数据在为数据分析方法提供了真正的指导,并知道了需要回答哪些问题来获取可用信息中的最佳价值后,应该决定最有价值的数据源并开始收集,这是所有数据分析技术中最基础的一步。





4设置KPI设置一系列关键绩效指标(KPI),这些指标可以在许多关键领域中跟踪,衡量和塑造您的进度。KPI对于定性研究中的数据分析方法和定量研究中的数据分析方法都是至关重要的,它对于督促自己及时完成数据分析目标有着重要作用。





五忽略无用数据六统计分析



更多3条
要学习Python、R、SAS等编程工具;对数据仓库需要了解可以去九道门做些实验项目;如果你觉得还是难,那就采用最基础的学习路径,直接买MYSQL关系型数据库的书看,随便到网上去找个免费的MYSQL课程听;;分布式存储HDOOP需要简单了解;云计算的技术作为了解就可以了;数据可视化不是很难,如果不要求特别美工的话,大家先理解图表,再研究研究仪表板,阿里云的Quich BI及DataV,百度的echarts都不错,主要是展示的业务结构需要规划;大数据技术:这个相对来说有些难度,如果是学数学统计类专业小伙伴就非常有优势了,其他专业的小伙伴也不用担心,毕竟工作后还可以继续学习,在工作中用的比较多的是聚类、关联、决策树、线性回归等,如果你不去做模型和算法工程师那么只需要会用就可以了,实在不行有专业的工具让我们用,阿里云的机器学习PAN是可以直接出结果的工具;。可以到天池大赛上去看一些案例,自己做做训练。如果自学的小伙伴觉得很难坚持,那就只能去报班了,九道门之类的,如果要成为大数据分析师的话就要时间沉定,或者让老师带你,像我就是进到决明后由老师带了半年,现在基本上已经能熟练的搞这一套了。
借助工具未至科技魔方是一款大数据模型平台,是一款基于服务总线与分布式云计算两大技术架构的一款数据分析、挖掘的工具平台,其采用分布式文件系统对数据进行存储,支持海量数据的处理。采用多种的数据采集技术,支持结构化数据及非结构化数据的采集。通过图形化的模型搭建工具,支持流程化的模型配置。通过第三方插件技术,很容易将其他工具及服务集成到平台中去。数据分析研判平台就是海量信息的采集,数据模型的搭建,数据的挖掘、分析最后形成知识服务于实战、服务于决策的过程,平台主要包括数据采集部分,模型配置部分,模型执行部分及成果展示部分等。

数据埋点采集分析方法


数据埋点采集分析方法

1、数据采集根据采集数据的类型可以分为不同的方式,主要方式有:传感器采集、爬虫、录入、导入、接口等。2、数据采集的基本方法:(1)传感器哪监测数据:通过传感器,即现在应用比较广的一个词:物联网。通过温湿度传感器、气体传感器、视频传感器等外自与鲁胡析齐脸雨家计头部硬件设备与系统进行通信,将传感器监测到的数据传至系统中进行采集使用。(2)第二种是新闻资讯类互联网数据,可以通站扬球月过编写网络爬虫,设置好数据源后进行有目标性的爬取数据。(3)第三种通过使用系统录入页面将已有的数据录入至系统中。(4)第四种方式是针对已有的批量的结构化数据可以开发导入工率家文诗提团角黄就具将其导入系统中。(5)第五种方式,可以通过API接口将其他系统中的数据采集到本系统中。

行业热门话题:

埋点数据采集工具,数据埋点方式,数据埋点实战,数据埋点采集分析


1024(定向养站+文章采集+ai聚合)目录程序| 2588(定向养站+文章采集+ai聚合)泛目录版| 淘客文章带货| 双标题| 挖关键词| 违禁词删除| 伪原创| 免费插件| 自助解答| 站长变现| 今日头条| 问答聚合| 投稿| 818(今日头条资讯聚合演示)| 1024(采集聚合+ai聚合)| 1024 (AI定向养站目录程序)| 定向养站目录程序| ai写作目录程序