编辑整理:整理来源:优酷,浏览量:76,时间:2022-12-11 23:49:01
什么是数字签名,什么是数字签名简述,什么是数字签名和认证技术
数字签名,就是使用数字证书的私钥对数据的摘要加密得到的数据,以保证数据的完整性、真实性和不可抵赖。
给你举个网银数字签名的例子,网银签名的整个流程如下:
客户端发起交易
网银通过脚本(如javascript)将交易数据作为参数,送给签名方法
签名方法,通过csp的实现,usbkey进行签名
网银将签名结果和交易数据原文送往网银服务器
网银服务器利用签名验证设备对签名结果进行验证,并与交易数据原文进行比对,判断是否签名有效、判断数据没有被篡改
若验证成功,保存数据库
返回验证结来自果
结束
很多人应该了解所谓数字签名算法,其实很简单,无外乎就是先计算哈希再使用私钥加密,这样可以得到一个具有不可否认性的数字签名。
我们以 SHA256withRSA 算法来举例说明,假设明文数据是 data ,然后经过以下过程:
使用 SHA256 算法对 data 计算出它的哈希值再使用 RSA256 算法对哈希值进行加密(私钥加密)这样就可以得到 data 的数字签名了,可事实果真如此吗?
为了验证上面的过程是否正确,我们来设计一个小实验来验证它。我们先用 JDK 计算一个 SHA256withRSA 算法的签名,然后再自己分步骤使用 SHA256 和 RSA256 来计算一个签名,两个签名对比一下,看看是否一致。
下面我们来设计这段程序,首先我们先生成一对 RSA 秘钥对,这里就不贴生成秘钥的源码了,直接把生成后的结果发出来:
/tmp/rsa_pub.pem
-----BEGIN RSA PUBLIC KEY----- MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAwMBtz2j9vpBgVi83KuoIeEmm5oBTG+t1W+UKz1EbCgDQCebOShNlq1gFPqxk2k6X5P9iLn703wh1FPiZmOIMIDbSCCPfcAGmBpH3odqAcoZgPAtb3g1hGtDx+vBbGLLzOY1zXeTeA2QNoyiPN+hS4qehLAlv6qqe5lbMkhlDvu0XiIlcqEVpX9CJDK5rVB085wHmq1hb8C4cPg6ToQaiHVRbWOoiem0Jw5F89XP7LwLjsA3W/VO1JYrM7G1OM1zNunTLBus+18n9bKwLaCOd4Cd8l0qwrEE0j+/cH2tze+9fI6bduOXgNLShTmRMnEe49lc2mq8bk1JKmqd12uHSxwIDAQAB -----END RSA PUBLIC KEY-----/tmp/rsa_pri.pem
-----BEGIN RSA PRIVATE KEY----- MIIEvwIBADANBgkqhkiG9w0BAQEFAASCBKkwggSlAgEAAoIBAQDAwG3PaP2+kGBWLzcq6gh4SabmgFMb63Vb5QrPURsKANAJ5s5KE2WrWAU+rGTaTpfk/2IufvTfCHUU+JmY4gwgNtIII99wAaYGkfeh2oByhmA8C1veDWEa0PH68FsYsvM5jXNd5N4DZA2jKI836FLip6EsCW/qqp7mVsySGUO+7ReIiVyoRWlf0IkMrmtUHTznAearWFvwLhw+DpOhBqIdVFtY6iJ6bQnDkXz1c/svAuOwDdb9U7UliszsbU4zXM26dMsG6z7Xyf1srAtoI53gJ3yXSrCsQTSP79wfa3N7718jpt245eA0tKFOZEycR7j2VzaarxuTUkqap3Xa4dLHAgMBAAECggEAYcD1r+vKTFwCT5MwglYgp4iK2XmZLJ60bT9yxQOYF/GjkHH6ivzdYhGIz2k02LZlOGEAlR4T6Azs/A68LxntFmVXDYPL7I0Ze1mJ4g7jd7GImssT80CLz8LKBf7h5FvVGIoRSTwqEEQs2mNWhv8PEh37kk7S8ItJfP3mT+36Opg3zPy7K6+awaB6yjzF+FNyc0pqbNk9tzCjzp9tIGuZlpKDMmabjl3aLew7e+LxqRwSvlc5OnHJ3MkXU814Nm4zEUiVtNNjzvPpPZLERGHUEQH8ND4NT/uPpVQJEnATz2FFa+aFz1sdXibhD8kmW8q956b2WePLlb9qRwCuvzHJOQKBgQDsC9Bccc6nKwXcEY08tmGdWS57m74r6pJ6pIm2oge+SLIBMeq3w/xhUkhzshdSpXJ7BgLKiLwRKxKnsUbqkJYn6I/Vn/zwZH8fka78/OWigKMq5C0iecvg9aClaEvBb0iopNxIiX+eAGMlJLQ7N9Wj8ZKu0k3ffkdP4+ehFCAXrQKBgQDRC7ITRcsKgWtvHlz1Lfw9PpAcP9gYEIbphXfdINGCGGXcQnM4fIYM92jGKP5qv9oHNklBY07vwape+chOVQis5QGgYaGIe/ekaIJ/y4b+8r7DIwUE/SD7Y7/Dhj5+s9/VmH6EeOEsY7dSmKkI38YAJHih3xW/t6M41kpXwxAywwKBgQDGsj8nwklBoM6i7EdmxuOur0aYmIZhs2iwQlcGXKiF/e2RYfKB1EFbrwb8FPrbABg5BNtOoAEntolSjcDzbNhpKbQCEFW8CeyUp26U2VF4FC7FySNRNRNw/3LGKeAzKTkRdQ1VJiE94HeU6aupeZumEJD4BmG08ziWQHNXvXgyVQKBgQC/5p6odo93q2r2bMclA/vkNQSSCkHThYhz4uQwCKqLZN5NHmsrVZSxXoW+M2+qi0gZCsqgzgtuqTg/S8mHryPxo6CknDtvUW36bT4vFqVscWaROBqpg729SMqHMTs5kOJP8FdkQJtk5n0pw56Y2OOoydI7ttD+WBPsXzuL6TN7hQKBgQC6DwuS5hyVYAEj/2k/SOtOVgo8oq0OSlJxnzYkogkVoi4og3uQi/6n/cP7GUJWCx4e89aX1taWQ+BmVgxLdTb9oIThPyt2wKCDKMOjGB3XAhd95L11fMt54Flc/PnwYjrKTUEwcTbQ18zL0Om0Wl+NkejrMe9U7bvCEzlmdQySZQ== -----END RSA PRIVATE KEY-----Java 测试程序源码(部分):
... private static final String algorithm = "RSA"; private static String signatureAlgorithm = "SHA256withRSA"; static { Security.addProvider( new org.bouncycastle.jce.provider.BouncyCastleProvider() ); } private static byte[] pemFile2Bytes(File pemFile) { PemReader reader = null; try { if (!pemFile.isFile() || !pemFile.exists()) { throw new FileNotFoundException(String.format("The file '%s' doesn't exist.", pemFile.getAbsolutePath())); } reader = new PemReader(new FileReader(pemFile)); PemObject pemObject = reader.readPemObject(); byte[] content = pemObject.getContent(); return content; } catch (IOException e) { throw new RuntimeException(e); } finally { if (reader != null) { try { reader.close(); } catch (IOException e) { e.printStackTrace(); } } } } private static PublicKey bytes2PublicKey(byte[] keyBytes) { try { PublicKey publicKey = null; KeyFactory kf = KeyFactory.getInstance(algorithm); EncodedKeySpec keySpec = new X509EncodedKeySpec(keyBytes); publicKey = kf.generatePublic(keySpec); return publicKey; } catch (NoSuchAlgorithmException e) { throw new RuntimeException("Could not reconstruct the public key, the given algorithm could not be found. " + e.getMessage()); } catch (InvalidKeySpecException e) { throw new RuntimeException("Could not reconstruct the public key. " + e.getMessage()); } } private static PrivateKey bytes2PrivateKey(byte[] keyBytes) { try { KeyFactory kf = KeyFactory.getInstance(algorithm); EncodedKeySpec keySpec = new PKCS8EncodedKeySpec(keyBytes); return kf.generatePrivate(keySpec); } catch (NoSuchAlgorithmException e) { throw new RuntimeException("Could not reconstruct the private key, the given algorithm could not be found. " + e.getMessage()); } catch (InvalidKeySpecException e) { throw new RuntimeException("Could not reconstruct the private key. " + e.getMessage()); } } public static PublicKey pemFile2PublicKey(String filepath) { byte[] bytes = pemFile2Bytes(new File(filepath)); return bytes2PublicKey(bytes); } public static PrivateKey pemFile2PrivateKey(String filepath) { byte[] bytes = pemFile2Bytes(new File(filepath)); return bytes2PrivateKey(bytes); } public static byte[] sign(byte[] data, PrivateKey privateKey) { try { Signature privateSignature = Signature.getInstance(signatureAlgorithm); privateSignature.initSign(privateKey); privateSignature.update(data); return privateSignature.sign(); } catch (NoSuchAlgorithmException | InvalidKeyException | SignatureException e) { throw new RuntimeException("an error occurred while signing a text"); } } public static boolean verify(byte[] data, byte[] signature, PublicKey publicKey) { try { Signature publicSignature = Signature.getInstance(signatureAlgorithm); publicSignature.initVerify(publicKey); publicSignature.update(data); return publicSignature.verify(signature); } catch (NoSuchAlgorithmException e) { throw new RuntimeException(e.getMessage()); } catch (InvalidKeyException | SignatureException e) { return false; } } public static byte[] encrypt(byte[] data, PrivateKey privateKey) { try { Cipher encryptCipher = Cipher.getInstance("RSA"); encryptCipher.init(Cipher.ENCRYPT_MODE, privateKey); return encryptCipher.doFinal(data); } catch (NoSuchAlgorithmException | NoSuchPaddingException | InvalidKeyException | IllegalBlockSizeException | BadPaddingException e) { throw new RuntimeException(e.getMessage()); } } public static void main(String[] args) throws Exception { final PublicKey publicKey = pemFile2PublicKey("/tmp/rsa_pub.pem"); final PrivateKey privateKey = pemFile2PrivateKey("/tmp/rsa_pri.pem"); byte[] data = "I Love Beijing".getBytes(UTF_8); byte[] signature1 = sign(data, privateKey); System.out.println("signature1: " + Hex.encodeHexString(signature1)); System.out.println("is signature1 valid? " + verify(data, signature1, publicKey)); System.out.println("--------------"); final byte[] sha = Hashing.sha256().hashBytes(data).asBytes(); System.out.println("sha (hex): " + Hex.encodeHexString(sha)); final byte[] signature2 = encrypt(sha, privateKey); System.out.println("signature2: " + Hex.encodeHexString(signature2)); System.out.println("is signature2 valid? " + verify(data, signature2, publicKey)); System.out.println("are signature1 and signature2 equal? " + Arrays.equals(signature1, signature2)); } ...完整代码请参见 https://gist.github.com/rocketk/4958d33b54e26a3ce068e05cc5b48608
运行的结果:
signature1: 194027d696054bf673c409493e3098b515a77f49e6f20d8eea35ed1f3ed4cf2409fa1e185eb5499c9394dacd0bb4422f89d620d67d66c081a759a16a43cda1d269db34ec8877c1d614ac1bd7dc15491e1f50dca9bca370225feeb5bb02fc9d6fc697b5b4f24b48421505a526f99c5d29909f89d75967055dfe2fa57d3330d5b723c827c67abc224b739a03cf1bfeac28c28541ab9dd63e799372295eae143939777c7017c6e46678f39dc9d675945667ec42d8bf91a4f0274de3a302af65fc6720182b63b615cf9cff57af436c5d54ec072e1debd0ac43308ca02b80ff757c7f589c0fad806aeb982663c23efd5f08dbc03324301b30942739a76e336c4a254e is signature1 valid? true -------------- sha (hex): ffc25c9e7dab979f4ee431d4c68881285378ad523c5e00db3db9e7d62b5f5560 signature2: 1e612e2cdfbb4c5338c8cead1490b7694cb975361c734feb642cfc367e49e2ae54d6802860a30f1222d1be7b2a1c01ea45a3f6c11178908d471f638db29e68b8ff5ce1aa47bf81e9de820bb22a09ecc37feee8c61dea8e9ec4025ce1b871cb8666e126d1d605eaf4b2abbf26c4841f4c2599865a396130e6d9bff5c1094fc0780a68a54c1937fd5a26a9beb2ba76e06087c63ff177df96106a64e5e3495c65917249121cb72fb6d41cdee9a1965266a7ff76f2e05f9c9f64b3ac108d879d1127884fc3b551d223b1d9ad110e74acb0dd53f433ec3a4bdb9fa345890e0c0ee8649a4fa776a0f76a0189878d3a4fc710615e6e0c4f4398591abc317f111448064b is signature2 valid? false are signature1 and signature2 equal? false其中 signature1 表示的是使用 JDK 工具生成的签名(实际上是 bouncycastle 提供的),而 signature2 则是先通过计算哈希再使用 RSA 私钥加密得到的,两个签名并不一致,并且 signature2 在验签的时候是无法验通过的,这是为什么呢?我们一直理解的签名过程中哪里出了问题?
其实在写这段代码验证这个逻辑之前我也以为签名就等同于哈希+加密,但当我运行完上面的程序后我发现我的理解是有错误的,于是我在 Stack Overflow 上去寻找答案,最终把他搞明白了。
原来在计算哈希和加密这两个步骤之间,还要有一个所谓 padding 的过程,即真正的步骤应该是这样:
使用 SHA256 算法对 data 计算出它的哈希值在哈希值前面加上一个固定前缀,用于表示它所使用的哈希算法, SHA256 对应的固定前缀是 '3031300D-底部咨询--底部咨询-000420' (16进制表示)再使用 RSA256 算法对已经加上前缀的哈希值进行加密(私钥加密)那么我们对测试程序稍加调整来验证以上所说的是否正确:
... public static void main(String[] args) throws Exception { final PublicKey publicKey = pemFile2PublicKey("/tmp/rsa_pub.pem"); final PrivateKey privateKey = pemFile2PrivateKey("/tmp/rsa_pri.pem"); byte[] data = "I Love Beijing".getBytes(UTF_8); byte[] signature1 = sign(data, privateKey); System.out.println("signature1: " + Hex.encodeHexString(signature1)); System.out.println("is signature1 valid? " + verify(data, signature1, publicKey)); System.out.println("--------------"); final byte[] sha = Hashing.sha256().hashBytes(data).asBytes(); System.out.println("sha (hex): " + Hex.encodeHexString(sha)); final byte[] signature2 = encrypt(sha, privateKey); System.out.println("signature2: " + Hex.encodeHexString(signature2)); System.out.println("is signature2 valid? " + verify(data, signature2, publicKey)); System.out.println("are signature1 and signature2 equal? " + Arrays.equals(signature1, signature2)); // 以下为新增部分 System.out.println("--------------"); final byte[] paddingSha = Hex.decodeHex("3031300D-底部咨询--底部咨询-000420" + Hex.encodeHexString(sha)); final byte[] signature3 = encrypt(paddingSha, privateKey); System.out.println("signature3: " + Hex.encodeHexString(signature3)); System.out.println("is signature3 valid? " + verify(data, signature3, publicKey)); System.out.println("are signature1 and signature3 equal? " + Arrays.equals(signature1, signature3)); } ...signature3 表示按新的方法生成的签名。
运行结果:
signature1: 194027d696054bf673c409493e3098b515a77f49e6f20d8eea35ed1f3ed4cf2409fa1e185eb5499c9394dacd0bb4422f89d620d67d66c081a759a16a43cda1d269db34ec8877c1d614ac1bd7dc15491e1f50dca9bca370225feeb5bb02fc9d6fc697b5b4f24b48421505a526f99c5d29909f89d75967055dfe2fa57d3330d5b723c827c67abc224b739a03cf1bfeac28c28541ab9dd63e799372295eae143939777c7017c6e46678f39dc9d675945667ec42d8bf91a4f0274de3a302af65fc6720182b63b615cf9cff57af436c5d54ec072e1debd0ac43308ca02b80ff757c7f589c0fad806aeb982663c23efd5f08dbc03324301b30942739a76e336c4a254e is signature1 valid? true -------------- sha (hex): ffc25c9e7dab979f4ee431d4c68881285378ad523c5e00db3db9e7d62b5f5560 signature2: 1e612e2cdfbb4c5338c8cead1490b7694cb975361c734feb642cfc367e49e2ae54d6802860a30f1222d1be7b2a1c01ea45a3f6c11178908d471f638db29e68b8ff5ce1aa47bf81e9de820bb22a09ecc37feee8c61dea8e9ec4025ce1b871cb8666e126d1d605eaf4b2abbf26c4841f4c2599865a396130e6d9bff5c1094fc0780a68a54c1937fd5a26a9beb2ba76e06087c63ff177df96106a64e5e3495c65917249121cb72fb6d41cdee9a1965266a7ff76f2e05f9c9f64b3ac108d879d1127884fc3b551d223b1d9ad110e74acb0dd53f433ec3a4bdb9fa345890e0c0ee8649a4fa776a0f76a0189878d3a4fc710615e6e0c4f4398591abc317f111448064b is signature2 valid? false are signature1 and signature2 equal? false -------------- signature3: 194027d696054bf673c409493e3098b515a77f49e6f20d8eea35ed1f3ed4cf2409fa1e185eb5499c9394dacd0bb4422f89d620d67d66c081a759a16a43cda1d269db34ec8877c1d614ac1bd7dc15491e1f50dca9bca370225feeb5bb02fc9d6fc697b5b4f24b48421505a526f99c5d29909f89d75967055dfe2fa57d3330d5b723c827c67abc224b739a03cf1bfeac28c28541ab9dd63e799372295eae143939777c7017c6e46678f39dc9d675945667ec42d8bf91a4f0274de3a302af65fc6720182b63b615cf9cff57af436c5d54ec072e1debd0ac43308ca02b80ff757c7f589c0fad806aeb982663c23efd5f08dbc03324301b30942739a76e336c4a254e is signature3 valid? true are signature1 and signature3 equal? true我们可以看到此时 signature3 已经可以被成功验签了,并且它和 signature1 (也就是使用 JDK 生成的)是完全一致的。
那么你可以要问了,除了 SHA256 之外,还有其他的哈希算法呀,它们分别对应哪些固定前缀呢?这里列出来一些常见的算法与它们的固定前缀:
For the six hash functions mentioned in Appdix B.1, the DER encoding T of the DigestInfo value is equal to the following: MD2: (0x)30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 02 05 00 04 10 || H. MD5: (0x)30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 05 05 00 04 10 || H. SHA-1: (0x)30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 || H. SHA-256: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20 || H. SHA-384: (0x)30 41 30 0d 06 09 60 86 48 01 65 03 04 02 02 05 00 04 30 || H. SHA-512: (0x)30 51 30 0d 06 09 60 86 48 01 65 03 04 02 03 05 00 04 40 || H.什么是数字签名?区块链共识指的是啥?用物理学理解共识机制