编辑整理:整理来源:腾讯视频,浏览量:88,时间:2022-07-22 20:21:01
相干光,相干光必须满足的三个条件是,相干光源的定义
相干光的条件:两束光在相遇区域:振动方向相同;振动频率相同;相位相同或相位差保持恒定。
光的相干指的是两个光的波动(光波)在传播过程中保持着相同的的相位差,具有相同的频率,或者有完全一致的波形。
这样的两束光可以在传播过程中产生稳定的干涉,也就是相长干涉、相消干涉。
但在现实中完美的相干光能是不存在的,通常用相干性来描述光的相干性能,包含时间相干性和空间相干性。从激光器出来的激光通常有很好的相干性。这种激光在分束后合并可以产生稳定的相干条纹。相干在物理学上还有更加普遍的意义,它代表两个波,或者波集,具有的相关性。
获得相干光源的三种方法:
1、波阵面分割法:将同一光源上同一点或极小区域(可视为点光源)发出的一束光分成两束,让它们经过不同的传播路径后,再使它们相遇,这时,这一对由同一光束分出来的光的频率和振动方向相同,在相遇点的相位差也是恒定的,因而是相干光。如,杨氏双缝干涉实验。
2、振幅分割法:一束光线经过介质薄膜的反射与折射,形成的两束光线产生干涉的方法。如薄膜干涉。
3、采用激光光源:激光光源的频率,位相,振动方向,传播方向都相同。
近日,中国科学技术大学郭光灿院士团队在光量子存储领域取得重要突破,将相干光的存储时间提升至1小时,大幅度刷新了2013年德国团队光存储1分钟的世界纪录,向实现量子U盘迈出重要一步。该成果日前在国际学术期刊《自然·通讯》发表。
现在光纤网络遍布全球,光已成为现代信息传输的基本载体。对光的捕获及存储可以帮助人们更有效地利用光场。光速高达30万公里每秒,降低光速乃至让光停留下来是国际学术界孜孜以求的目标。光的存储在量子通信领域尤其重要,这是因为基于光量子存储可以构建量子中继,从而克服信道损耗建立起大尺度量子网络。另一种远程量子通信的解决方案是量子U盘,即把光子存储到超长寿命量子存储器(量子U盘)中,然后通过直接运输量子U盘来传输量子信息。考虑到飞机和高铁等的速度,量子U盘的光存储时间需要达到小时量级。
早在1999年,美国哈佛大学团队利用冷原子气体把光速降至17米每秒。2013年德国达姆施塔特大学团队利用掺镨硅酸钇晶体使得光停留了1分钟,创下该领域的世界纪录,然而这一光存储时间仍远低于量子U盘的技术需求。2015年澳大利亚国立大学团队在一阶塞曼效应为零磁场下,观察到掺铕硅酸钇晶体的核自旋相干寿命长达6小时,让人们看到了长寿命光存储的希望。然而由于对该材料的能级结构缺乏了解,至今未能实现长寿命光存储。
△存储方案示意图
依托自主研发的光学拉曼外差探测核磁共振谱仪,中国科学技术大学科研团队精确刻画了掺铕硅酸钇晶体光学跃迁的完整哈密顿量,并通过理论预测和实验观测,成功实现了光信号的长寿命存储,总存储时间长达1小时。通过加载相位编码,实验证实在经历了1个小时存储后,光的相位存储保真度高达96.4±2.5%。这些结果表明该装置具有极强的相干光存储能力以及用于量子态存储的潜力。
这一科研成果将光存储时间从分钟量级推进至小时量级,满足了量子U盘对光存储寿命指标的基本需求。研究团队李传锋教授介绍,接下来通过优化存储效率及信噪比,有望实现量子U盘,从而可以基于经典运输工具实现量子信息的传输,建立一种全新的量子信道。
(来源:央视新闻)